Π² ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠΈΠ³Π½Π°Π»Π°
ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΡΠΈΠ³Π½Π°Π»ΠΎΠ²
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π°, Π° ΡΠ°ΠΊΠΆΠ΅ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π°, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΠΊ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ½ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ Π΄Π²ΠΎΠΉΠ½Π°Ρ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° (Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΎΡ ΠΏΠΈΠΊΠ° Π΄ΠΎ ΠΏΠΈΠΊΠ° ΡΠΈΠ³Π½Π°Π»Π°), ΠΊΠΎΡΠΎΡΠ°Ρ, ΠΊΠ°ΠΊ Π½Π΅ΡΡΡΠ΄Π½ΠΎ Π΄ΠΎΠ³Π°Π΄Π°ΡΡΡΡ, ΡΠ°Π²Π½Π° ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅. ΠΠ½ΠΎΠ³Π΄Π° ΡΠΏΠΎΡΡΠ΅Π±Π»ΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ: UΠΠ€Π€ = Um = 0,707Um. ΠΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ²: Π΄Π»Ρ Π΄ΡΡΠ³ΠΈΡ
Π²ΠΈΠ΄ΠΎΠ² ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ Π΄ΡΡΠ³ΠΈΠΌ. Π‘ΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ ΡΠ°ΡΡΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ; Π΄Π΅Π»ΠΎ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ. Π Π ΠΎΡΡΠΈΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ΅ΡΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ 220 Π ΠΈ ΡΠ°ΡΡΠΎΡΡ 50 ΠΡ.
ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ Π² Π΄Π΅ΡΠΈΠ±Π΅Π»Π°Ρ . ΠΠ°ΠΊ ΡΡΠ°Π²Π½ΠΈΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ Π΄Π²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ²? ΠΠΎΠΆΠ½ΠΎ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΠΈΠ³Π½Π°Π» X Π² Π΄Π²Π° ΡΠ°Π·Π° Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ ΡΠΈΠ³Π½Π°Π» Y. ΠΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΠΊ ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠΎ ΠΎΡΠ΅Π½Ρ ΡΠ°ΡΡΠΎ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ², ΠΈ ΡΠΎΠ³Π΄Π° ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π² Π΄Π΅ΡΠΈΠ±Π΅Π»Π°Ρ (Π΄Π΅ΡΠΈΠ±Π΅Π» ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΎΠ΄Π½Ρ Π΄Π΅ΡΡΡΡΡ ΡΠ°ΡΡΡ Π±Π΅Π»Π°, Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ΠΉ Β«Π±Π΅Π»Β» Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ). ΠΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ΅ Π² Π΄Π΅ΡΠΈΠ±Π΅Π»Π°Ρ :
Π₯ΠΎΡΡ Π΄Π΅ΡΠΈΠ±Π΅Π» ΡΠ»ΡΠΆΠΈΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄Π²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², ΠΈΠ½ΠΎΠ³Π΄Π° ΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ, Π° Π½Π΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ. ΠΠ΅Π»ΠΎ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ°Π»ΠΎΠ½Π½ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π»ΡΠ±ΡΡ Π΄ΡΡΠ³ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ Π² Π΄Π΅ΡΠΈΠ±Π΅Π»Π°Ρ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ°Π»ΠΎΠ½Π½ΠΎΠΉ. ΠΠ·Π²Π΅ΡΡΠ½ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ, Π½ΠΎ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°ΡΡΡΡ); ΠΏΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ· Π½ΠΈΡ : Π°) Π΄ΠΠ β ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ 1 Π; Π±) Π΄ΠΠΡ β Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡ-ΡΠ΅Π΅ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ 1 ΠΌΠΡ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅, Π΄Π»Ρ ΡΠ°Π΄ΠΈΠΎΡΠ°ΡΡΠΎΡ ΡΡΠΎ ΠΎΠ±ΡΡΠ½ΠΎ 50 ΠΠΌ, Π΄Π»Ρ Π·Π²ΡΠΊΠΎΠ²ΡΡ ΡΠ°ΡΡΠΎΡ β 600 ΠΠΌ (Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ 0 Π΄ΠΠΡ Π½Π° ΡΡΠΈΡ Π½Π°Π³ΡΡΠ·ΠΊΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ 0,22 Π ΠΈ 0,78 Π); Π²) Π΄ΠΠΏ β Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΡΠΌΠΎΠ²ΠΎΠΉ ΡΠΈΠ³Π½Π°Π», Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅ΠΌΡΠΉ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠΌ ΠΏΡΠΈ ΠΊΠΎΠΌΠ½Π°ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅. ΠΡΠΆΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΡΠ°Π»ΠΎΠ½Π½ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ 0 Π΄Π: ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π½Π΅ Π·Π°Π±ΡΠ²Π°ΡΡ Π΅Π³ΠΎ ΠΎΠ³ΠΎΠ²Π°ΡΠΈΠ²Π°ΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Β«Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° 27 Π΄Π ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ 1 ΠΒ», ΠΈΠ»ΠΈ Π² ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ Β«27 Π΄Π ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ 1 ΠΡΡΡΒ» ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΡΠ»ΠΎΠ²Π½ΡΠΌ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΠ.
ΠΠΌΠΏΡΠ»ΡΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΡΠΎΠΊ, ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΡΡ ΠΎΡ Π½ΡΠ»Ρ ΠΈ ΠΈΠΌΠ΅ΡΡΠΈΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π»ΠΈΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΈΠ»ΠΈ ΡΡΠ°Π²Π½ΠΈΠΌΠΎΠ³ΠΎ Ρ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΡΠΎΡ ΡΠΎΠΊ ΠΈΠ»ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅. Π ΡΠ»ΡΡΠ°Π΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΡ Π΄ΡΡΠ³ Π·Π° Π΄ΡΡΠ³ΠΎΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ.
Π ΠΏΡΠΎΡΠΈΠ²Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠΎΡ ΡΠΈΠ³Π½Π°Π» Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ ΡΠΎΠΊΠΎΠΌ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ. Π‘ ΡΠΈΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡ, ΠΊΠ°ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π΄ΠΎΠ»Π³ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ Π΄Π°Π½Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΡΡΠΎΠ³ΠΎ. ΠΠ΄Π½Π°ΠΊΠΎ Π² ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΠΏΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 3Ο, Π³Π΄Π΅ Ο β ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΠ°ΠΊΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²ΠΏΠΎΠ»Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎ.
ΠΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡΠ»ΡΡΡ (ΡΠΈΡ. 1.2, Π°) ΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΡ (ΡΠΈΡ. 1.2, Π±).
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠΌΠΈ Π΄Π²ΡΠΌΡ ΡΠΈΠΏΠ°ΠΌΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ³ΠΈΠ±Π°ΡΡΠ°Ρ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡΠ»ΡΡ. Π§Π°ΡΡΠΎΡΠ° ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π°, ΠΊΠΎΡΠΎΡΡΠΌ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡΠ»ΡΡ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΡΡΠΎΡΠΎΠΉ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ. Π‘ΠΈΡΡΠ΅ΠΌΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΠΏΠ΅ΡΠΈΡΡΡΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ Ρ Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ Π±ΡΠ΄Π΅ΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΠΎΡΡΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΌΠΈ.
Π ΠΈΡ.1.2. ΠΠΈΠ΄Π΅ΠΎ- ΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΡ
ΠΠ° ΡΠΈΡ.1.3 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ°.
ΠΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠ²Π»ΡΡΡΡΡ:
1.ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΈΠΌΠΏΡΠ»ΡΡΠ° Um = Π;
2.ΠΠΊΡΠΈΠ²Π½Π°Ρ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° (ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π½Π° ΡΡΠΎΠ²Π½Π΅ 0,1Π) tΠ;
Π ΠΈΡ. 1.3. Π Π΅Π°Π»ΡΠ½ΡΠΉ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ
5.ΠΡΠΊΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΡΡΠΈΠ½Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΞU;
6.ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ±ΡΠΎΡΠ° Um ΠΠΠ ;
7.ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ±ΡΠΎΡΠ° tΠ ΠΠΠ ;
8.ΠΠΎΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° P = W/tΠ, Π³Π΄Π΅ W β ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°.
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠ΅ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΡ ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ (ΡΠΈΡ.1.4). ΠΠ½Π° Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ:
1.Π§Π°ΡΡΠΎΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Ζ = 1/Π’, Π³Π΄Π΅ T = tΠ + tΠ;
2.ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Ξ³ = tΠ/Π’ (Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ 0β¦1) ΠΈ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ Q = Π’/tΠ (Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΎΡ Π΄ΠΎ 1);
3.Π‘ΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΠ° (ΡΠΈΡ.1.5)
; (1.4)
Π ΠΈΡ. 1.4. ΠΠΌΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ
Π ΠΈΡ. 1.5. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°
ΠΠΌΠΏΡΠ»ΡΡΡ ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡ: ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅, ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΡΠ΅, ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΈ Π΄Ρ. (ΡΠΈΡ.1.6), ΡΠ°ΠΊ ΠΆΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΎΠ΄Π½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΠΌΠΈ (Π°) ΠΈ ΡΠ°Π·Π½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΠΌΠΈ (Π±) (ΡΠΈΡ.1.7). ΠΠ΄Π½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ, ΡΠ°ΡΡΠΎΡΡ ΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΡ.
Π ΠΈΡ. 1.6. Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ (Π°), ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΡΠ΅ (Π±), ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ (Π²) ΠΈΠΌΠΏΡΠ»ΡΡΡ
Π ΠΈΡ. 1.7. ΠΠ΄Π½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ (Π°) ΠΈ ΡΠ°Π·Π½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ (Π±) ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΡ
ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ°Π±ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΠΈΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠΈΠΏΠΎΠ²ΡΡ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π΅Π΄ΡΡΡΠΈΡ .
Π‘ΡΡΠΏΠ΅Π½ΡΠ°ΡΠΎΠ΅ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅ β ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΡΠ°Π²Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ (ΡΠΈΡ. 1.8, Π°). Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈΡΠΏΡΡΡΠ²Π°Π΅Ρ ΡΠΎΠ»ΡΠΎΠΊ. ΠΠ½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈ
(1.5)
ΠΠ΄ΠΈΠ½ΠΈΡΠ½ΡΠΉ ΡΠΊΠ°ΡΠΎΠΊ Π² ΠΌΠΎΠΌΠ΅Π½Ρ t1 ΠΏo ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΌΠΎΠΌΠ΅Π½ΡΡ t0 Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² Π²ΠΈΠ΄Π΅ 1( t1 β t0).
Π ΠΈΡ.1.8. Π’ΠΈΠΏΠΎΠ²ΡΠ΅ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΡ
2. ΠΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ΅ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΠΊΠ°ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π΄Π²ΡΡ
ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ
ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅, Π½ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ
ΠΏΠΎ Π·Π½Π°ΠΊΡ ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΡΡ
Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠΉ, ΡΠ΄Π²ΠΈΠ½ΡΡΡΡ
Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΎΠ±ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΈΠ»ΠΈ Π΄Π΅Π»ΡΡΠ°-ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ½Π° ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ .
ΠΠ΅Π»ΡΡΠ°-ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ:
Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ (1.6) ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»ΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, ΠΏΠ»ΠΎΡΠ°Π΄Ρ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½Π°Ρ Π΅ΠΉ, ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΠ°Π²Π½ΠΎΠ΅ 1.
Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ (1.7) ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ , ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π½Π° Π΄Π΅Π»ΡΡΠ°-ΡΡΠ½ΠΊΡΠΈΡ, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π»ΠΈΡΡ Π² ΠΌΠΎΠΌΠ΅Π½Ρ t1 ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ Π΅Π΅ ΡΠ°Π²Π½Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π² ΡΠΎΡΠΊΠ΅ t1. ΠΠ΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ°ΡΠΊΠ°.
3. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅. Π ΡΡΠ΄Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΠΌ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. Π’Π°ΠΊ, Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΡΡΠ΅ΠΌ, ΡΠ°Π±ΠΎΡΠ°ΡΡΠΈΡ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ Π½Π΅Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΊΡ ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠΉ.
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΌ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ x(t)=sin Οt.
ΠΠ½Π°Π»ΠΎΠ³ΠΎΠ²ΡΠ΅ ΠΈ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ ΠΈΠΌΠ΅ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΠΈΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ½ΠΈ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ. Π ΡΠ°ΠΊΠΈΠΌ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌ ΠΎΡΠ½ΠΎΡΡΡΡΡ: Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½, Π²ΡΠ΅ΠΌΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈ ΡΠΈΡΠΈΠ½Π° ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠΈΠ³Π½Π°Π»Π°.
ΠΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ (ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ) ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΉ (ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠΉ) ΠΌΠΎΡΠ½ΠΎΡΡΠΈ. ΠΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ ΡΠΈΠ³Π½Π°Π»Π° ΠΈ Π½Π΅ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΡΠΌΡΡΠ»Π° ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π΅ΠΌΠΎΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ Π΅Π³ΠΎ Π²ΡΠ±ΠΎΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠΌΠΈ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠΌ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡΡΡ ΡΠΈΠ³Π½Π°Π» Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ, ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ ΠΏΡΠΈΠ΅ΠΌΠ° Π±Π΅Π· ΠΏΠΎΡΠ΅ΡΠΈ Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π² Π½Π΅ΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ. ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ°Ρ (ΠΏΠΎΡΠΎΠ³ΠΎΠ²Π°Ρ) ΠΌΠΎΡΠ½ΠΎΡΡΡ ΡΠΈΠ³Π½Π°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠΎΠ²Π½Π΅ΠΌ ΡΡΠΌΠΎΠ² ΠΈ ΠΏΠΎΠΌΠ΅Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ ΡΠΊΠ°ΡΠΊΠΎΠ² ΠΏΠΈΡΠ°ΡΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ ΡΡΠΌΠΎΠ², Π½Π°Π²ΠΎΠ΄ΠΎΠΊ ΠΎΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΠΏΠΎΠ»Π΅ΠΉ ΠΈ Ρ. Π΄. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΈΠ³Π½Π°Π» Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ°ΠΊΠΈΠΌ, ΡΡΠΎΠ±Ρ ΠΎΠ½ ΡΠ΅ΡΠΊΠΎ ΡΠ°Π·Π»ΠΈΡΠ°Π»ΡΡ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΠΏΠΎΠΌΠ΅Ρ . Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ³Π½Π°Π»Π° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»-ΠΏΠΎΠΌΠ΅Ρ Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ (ΠΏΠΈΠΊΠΎΠ²ΠΎΠ΅) Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ³Π½Π°Π»Π° ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΡΠΎΡΡΠΎΠΌ Π·Π°ΡΡΠ°ΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΠΊ ΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΠΌΠΈ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈ ΡΡΡΡΠΎΠΉΡΡΠ², ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ° ΡΠΈΠ³Π½Π°Π»ΠΎΠ². ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π΅ΠΌΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², Π° Π·Π½Π°ΡΠΈΡ ΠΈ Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π² Π½ΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ.
ΠΡΠ΅ΠΌΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ ΡΠΈΠ³Π½Π°Π»Π° ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΈΠ³Π½Π°Π» Π΄ΠΎΡΡΠΈΠ³Π½Π΅Ρ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ΅Π³ΠΎΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²ΡΠ·Π°Π½ Ρ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΡΡΡΡΠΎΠΉΡΡΠ², ΡΠΎΡΠΌΠΈΡΡΡΡΠΈΡ ΡΠΈΠ³Π½Π°Π», ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΈΡ ΠΈΠ½Π΅ΡΡΠΈΠΎΠ½Π½ΠΎΡΡΡΡ. ΠΡΠ΅ΠΌΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°ΡΡ Π»ΠΈΠ±ΠΎ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ), ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅ΠΉ ΡΠ΅Π°Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ, Π»ΠΈΠ±ΠΎ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ ΡΠ°ΡΡΠΎΡΡ (ΡΠΏΠ΅ΠΊΡΡΠΎΠΌ, ΠΈΠ»ΠΈ ΡΡΠ΄ΠΎΠΌ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ). ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠ±Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½Ρ ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΡΡΡ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π°, Π° ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊ Π΄ΡΡΠ³ΠΎΠΌΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΡΠΌΠΎΠ³ΠΎ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π€ΡΡΡΠ΅ ΠΈΠ»ΠΈ ΠΠ°ΠΏΠ»Π°ΡΠ°.
ΠΡΠ±ΠΎΡ ΡΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π° ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ (Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΡΠ°ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΡΡΠΎΠΉΡΡΠ²Π°. ΠΡΠΈ ΡΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π»ΠΈΡΡ ΡΠΎΡΠΊΠ° Π·ΡΠ΅Π½ΠΈΡ Π½Π° ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ, Π½ΠΎ Π½Π΅ ΡΠ°ΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΡ, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΎΡ ΡΠΏΠΎΡΠΎΠ±Π° Π΅Π΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ.
ΠΡΠΎΠΌΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ ΠΎΠ±ΡΠΈΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ, ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²ΠΈΠ΄Ρ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ ΡΡΠ΄ΠΎΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ , Π΄Π΅ΡΠ°Π»ΠΈΠ·ΠΈΡΡΡΡΠΈΡ ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ². Π£ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°, Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ β Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°, ΡΠ°ΡΡΠΎΡΠ°, ΡΠ°Π·Π°, ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΈ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΌΠΏΡΠ»ΡΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½Ρ ΠΏΠΎ ΡΠΎΡΠΌΠ΅, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠΏΠΈΡΠ΅ΠΌ ΠΈΡ Π±ΠΎΠ»Π΅Π΅ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎ.
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π§ΡΠΎΠ±Ρ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΈ ΠΎΡΠ»ΠΈΡΠΈΡΡ ΠΎΠ΄Π½ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ , ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ 6 Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΠ½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 1):
Π’Π°ΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠ°ΠΊ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ, ΡΠ°ΠΊ ΠΆΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\), Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΡΠ»Ρ ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
Π§Π°ΡΡΠΎΡΡ ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΈΠ· Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°, ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ. ΠΠ½ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½ΠΈΠΆΠ΅ Π² ΡΠ΅ΠΊΡΡΠ΅ ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠΈ.
Π ΡΠ°Π·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π²Ρ ΠΎΠ΄ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠΉ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π§ΠΈΡΠ°ΠΉΡΠ΅ Π΄Π°Π»Π΅Π΅.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΠΎ Π΅ΡΡΡ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°, Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΌΠ΅ΡΡΠ°Ρ .
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π°ΡΡΠ΄, Π΅Π΅ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΡΠ»ΠΎΠ½Π°Ρ . ΠΡΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΡΠΎΠΊ β ΡΠΎ Π² ΠΠΌΠΏΠ΅ΡΠ°Ρ , Π° Π΅ΡΠ»ΠΈ β Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎ Π² ΠΠΎΠ»ΡΡΠ°Ρ .
Π§Π°ΡΡΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅, ΠΏΡΠΈΠΏΠΈΡΡΠ²Π°Ρ ΠΊ Π±ΡΠΊΠ²Π΅, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠ΅ΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ½Π΄Π΅ΠΊΡ Β«0Β» ΡΠ½ΠΈΠ·Ρ.
Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΏΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \( \large x \). Π’ΠΎΠ³Π΄Π° ΡΠΈΠΌΠ²ΠΎΠ»ΠΎΠΌ \( \large x_ <0>\) ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ½ΠΎΠ³Π΄Π° Π΄Π»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π±ΠΎΠ»ΡΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΡΡ Π±ΡΠΊΠ²Ρ A, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ ΠΏΠ΅ΡΠ²Π°Ρ Π±ΡΠΊΠ²Π° Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π° Β«amplitudeΒ».
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 2):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠΎΠ³Π΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠΎΡΠ½ΠΎ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΠ΄Π½ΠΈ ΠΈ ΡΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΊΡΡΠΎΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«TΒ» ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ .
\( \large T \left( c \right) \) β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΄Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Π° β Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΡΡΠΎΠΌΡ, Ρ ΠΎΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π½ΠΎ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π΄ΠΎΠ»ΡΠΌΠΈ ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ (ΡΠΈΡ. 3), Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΠΎΡΠ»Π΅, ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΎΡ ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ½ΠΊΡΠΈΡΡ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΠ½ΠΊΡΠΈΡΠ°ΠΌΠΈ β ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠΈΠΎΠ΄ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°ΠΉΡΠΈ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°ΠΊΠΈΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² (ΡΠΈΡ. 4):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΠΎΡΠ°
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²Ρ Β«Π½ΡΒ» \( \large \nu \).
Π§Π°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅?Β».
ΠΠΎΡΡΠΎΠΌΡ, ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΎΡΡ β ΡΡΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ:
\( \large \nu \left( \frac<1>
ΠΠ½ΠΎΠ³Π΄Π° Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ
Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠ°ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΡ \( \large \displaystyle \nu \left( c^ <-1>\right) \), ΠΏΠΎΡΠΎΠΌΡ, ΡΡΠΎ ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ \( \large \displaystyle \frac<1>
ΠΠ°ΡΠΈΠ½Π°Ρ Ρ 1933 Π³ΠΎΠ΄Π° ΡΠ°ΡΡΠΎΡΡ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π² ΠΠ΅ΡΡΠ°Ρ Π² ΡΠ΅ΡΡΡ ΠΠ΅Π½ΡΠΈΡ Π° Π ΡΠ΄ΠΎΠ»ΡΡΠ° ΠΠ΅ΡΡΠ°. ΠΠ½ ΡΠΎΠ²Π΅ΡΡΠΈΠ» Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΎΡΠΊΡΡΡΠΈΡ Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΠΈΠ·ΡΡΠ°Π» ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π²ΠΎΠ»Π½Ρ.
ΠΠ΄Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°ΡΡΠΎΡΠ΅ Π² 1 ΠΠ΅ΡΡ.
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ, Π½ΡΠΆΠ½ΠΎ Π½Π° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄. Π Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΡΠΏΠΎΡΠΎΠ± ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΠΈ ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΡ ΡΡ Π² ΡΡΠΎΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» (ΡΠΈΡ. 5).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ β ΡΡΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠ΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π½ΠΎΠΌΡ ΠΏΠΎΠ»Π½ΠΎΠΌΡ ΠΎΠ±ΠΎΡΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large 2\pi\) ΡΠ°Π΄ΠΈΠ°Π½. ΠΠΎΡΡΠΎΠΌΡ, ΠΊΡΠΎΠΌΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 1 ΡΠ΅ΠΊΡΠ½Π΄Π°, ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄.
Π§ΠΈΡΠ»ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«ΠΎΠΌΠ΅Π³Π°Β»:
\( \large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΡΠ°ΠΊ ΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ, Π° Π΅ΡΠ΅ β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ (ΡΡΡΠ»ΠΊΠ°).
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β».
ΠΠ±ΡΡΠ½Π°Ρ \( \large \nu \) ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ \( \large \omega \) ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π‘Π»Π΅Π²Π° Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π° ΡΠΏΡΠ°Π²Π° β Π² ΠΠ΅ΡΡΠ°Ρ .
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \), Π½ΡΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ T.
ΠΠ°ΡΠ΅ΠΌ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ \( \large \displaystyle \nu = \frac<1>
Π ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ \( \large \omega = 2\pi \cdot \nu \) ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ \( \large \omega \) ΡΠ°ΡΡΠΎΡΡ.
ΠΠ»Ρ Π³ΡΡΠ±ΠΎΠΉ ΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΎΠ±ΡΡΠ½ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 6 ΡΠ°Π· ΡΠΈΡΠ»Π΅Π½Π½ΠΎ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. ΠΠ° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π», ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\), Π° Π·Π°ΡΠ΅ΠΌ, ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (ΡΠΈΡ. 6).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΈ ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΅Π΅ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΠΡΠΊΠ»ΠΎΠ½ΠΈΠΌ ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΈ Π±ΡΠ΄Π΅ΠΌ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΈΡ Π² ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠΠΎΠ³Π΄Π° ΠΌΡ ΠΎΡΠΏΡΡΡΠΈΠΌ ΠΈΡ , ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π°ΡΠ½ΡΡ ΡΠ°ΡΠΊΠ°ΡΠΈΠ²Π°ΡΡΡΡ. Π ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ ΠΈΠ· ΡΠ³Π»Π°, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ.
Π’Π°ΠΊΠΎΠΉ, Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ, Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΡΠΎΡ ΡΠ³ΠΎΠ» (ΡΠΈΡ. 7) ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡΠ΄Ρ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, \(\large \varphi_ <0>\).
\(\large \varphi_ <0>\left(\text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ (ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ).
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ ΡΠ³ΠΎΠ», Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅Π»ΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΈΡ ΠΎΡΠΏΡΡΡΠΈΡΡ. ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°ΡΠ½Π΅ΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΏΠ΅ΡΡ, ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (ΡΠΈΡ. 8). ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ°.
ΠΡΠΈΠ²Π°Ρ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΡΠ½ΡΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠΎΡΠΊΠΈ t = 0. ΠΡΠ° ΠΊΡΠΈΠ²Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Β«ΡΠΈΡΡΡΠΌΒ», Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΡΠΌ ΡΠΈΠ½ΡΡΠΎΠΌ. ΠΠ»Ρ Π½Π΅Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ \(\large \varphi_ <0>\) ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΡΠ°Π²Π½ΠΎΠΉ Π½ΡΠ»Ρ.
ΠΡΠΎΡΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. ΠΠ°ΡΠ°Π»ΠΎ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π²ΠΏΡΠ°Π²ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0. ΠΠΎΡΡΠΎΠΌΡ, Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ, Π½Π°ΡΠ°Π²ΡΠ΅ΠΉ Π½ΠΎΠ²ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΏΡΡΡΡ Π²ΡΠ΅ΠΌΡ \(\large \Delta t\), Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Π±ΡΠ΄Π΅Ρ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ±ΡΠ°ΡΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ (ΡΠΈΡ. 8) Π½Π° ΡΠΎ, ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π»Π΅ΠΆΠ°ΡΠ΅Π΅ Π½Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) β Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ . ΠΠ½Π°ΡΠΈΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ²ΡΠ·Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\) ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π΅ΠΌΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\).
ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΏΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΠ°Π³ΠΎΠ².
\[\large T = 5 β 1 = 4 \left( \text <ΡΠ΅ΠΊ>\right)\]
ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ T = 4 ΡΠ΅ΠΊ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΊΡΠ°ΡΠ½Π°Ρ ΠΊΡΠΈΠ²Π°Ρ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0 ΠΈ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠ΅ΡΠ²Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
\(\large \displaystyle \frac<1> <4>\cdot 2\pi = \frac<\pi > <2>=\varphi_ <0>\)
ΠΠ½Π°ΡΠΈΡ, ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ \(\large \Delta t\) ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) β ΡΡΠΎ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅.
Π§ΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΠ΅, Π±ΡΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π·Π½Π°ΠΊ Β«ΠΌΠΈΠ½ΡΡΒ» Π΄Π»Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°:
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΡΠ»ΠΈ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π»Π΅ΠΆΠΈΡ Π»Π΅Π²Π΅Π΅ ΡΠΎΡΠΊΠΈ t = 0, ΡΠΎ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΠΊ Β«ΠΏΠ»ΡΡΒ».
ΠΠ»Ρ Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ, Π»ΠΈΠ±ΠΎ Π²ΠΏΡΠ°Π²ΠΎ, ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½ΡΠ»Π΅Π²Π°Ρ \(\large \varphi_ <0>= 0 \).
ΠΠ»Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π±Π΅ΡΠ΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«+Β».
Π Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° Π²ΠΏΡΠ°Π²ΠΎ ΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π΅Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \varphi_ <0>\) Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«-Β».
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΡ:
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠ°ΠΊΠΈΠΌ Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° Π·Π°Π΄Π°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ, Π½Π°ΡΠΈΠ½Π°Ρ ΠΈΠ· ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½ΡΠ»Ρ ΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΠΏΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ ΡΠ°Π· ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄Π΅ΡΡΠΊΠΈΠ΅ ΠΊΠ°ΡΠ΅Π»ΠΈ (ΡΠΈΡ. 9) ΠΈ ΡΠ³ΠΎΠ» ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠΎΡ ΡΠ³ΠΎΠ» ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΠΎΠ½ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΡΠΎΡ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ \(\varphi\).
Π Π°Π·Π»ΠΈΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·ΠΎΠΉ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΠ³Π»Π° ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ β Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ, ΠΎΠ½ Π·Π°Π΄Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ, ΡΠ³ΠΎΠ», ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠ²ΡΠΉ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ \( \varphi_<0>\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π°), ΠΎΠ½Π° ΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. Π Π²ΡΠΎΡΠΎΠΉ ΡΠ³ΠΎΠ» β ΠΏΡΠΎΡΡΠΎ \( \varphi\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π±) β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ.
ΠΠ°ΠΊ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΠ°Π·Ρ
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π·Π° \(\large \varphi\) Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΡΠΎΡΠΊΠ° Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠ° ΡΠΎΡΠΊΠ° ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ (Π±Π΅ΠΆΠΈΡ) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ (ΡΠΈΡ. 11). Π’ΠΎ Π΅ΡΡΡ, Π² ΡΠ°Π·Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΠΊΡΠΈΠ²ΠΎΠΉ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π΄Π²Π΅ ΠΊΡΡΠΏΠ½ΡΠ΅ ΠΊΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΠΎΠ½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ°Π·Π°ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΠΈ t2.
Π Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΡΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ°, Π»Π΅ΠΆΠ°ΡΠ°Ρ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=0. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½Π° ΠΌΠ΅Π»ΠΊΠ°Ρ ΠΊΡΠ°ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°, ΠΎΠ½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π·Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ
ΠΡΡΡΡ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \omega\) β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΈ \(\large \varphi_<0>\) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°. ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°ΠΌΠΈ.
ΠΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ t Π±ΡΠ΄Π΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π€Π°Π·Ρ \(\large \varphi\), ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ Π»ΡΠ±ΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠ΅ΠΌΡ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½ΡΡ t Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ· ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠ΅Π²Π°Ρ ΠΈ ΠΏΡΠ°Π²Π°Ρ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ³Π»Π° (Ρ. Π΅. ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ , ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ). Π ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π²ΠΌΠ΅ΡΡΠΎ ΡΠΈΠΌΠ²ΠΎΠ»Π° t Π² ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠ΅ Π½Π°Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π·
ΠΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π· ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° (ΡΠΈΡ. 12). ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΠ²ΠΎΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ.
\( \large \varphi_<01>\) β Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ,
\( \large \varphi_<02>\) β Π΄Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π· ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΈ Π²ΡΠΎΡΡΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ:
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° \(\large \Delta \varphi \) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π° ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠ°Π·Ρ Π΄Π²ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡΡ ΡΠ°Π·.
ΠΠ°ΠΊ ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΡ ΠΎΠΆΠ΅ΡΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΈ Π²ΠΈΠ΄Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ.
ΠΠΎΡΡΠΎΠΌΡ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡΠ΅ Π΄Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ΄ΠΎΠΉΠ΄ΡΡ ΡΠ°ΠΊ ΠΆΠ΅, Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
\( \large T \left( c \right) \) β Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ (ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ);
\( \large N \left( \text <ΡΡ>\right) \) β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\( \large t \left( c \right) \) β ΠΎΠ±ΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π΄Π»Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\(\large \nu \left( \text <ΠΡ>\right) \) β ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
\(\large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
\(\large \varphi_ <0>\left( \text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°;
\(\large \varphi \left( \text <ΡΠ°Π΄>\right) \) β ΡΠ°Π·Π° (ΡΠ³ΠΎΠ») Π² Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t;
\(\large \Delta t \left( c \right) \) β ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t=0 ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.